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MJECHANIC3 0? GAULAR MEDIA *

For a m~ber of years 1 there has been under development a mathematical

theory of the mechanical behavior of materials ccmposed of discrete elastio

gra'ins in diroct contact. 3ventuallyP the theory Is intended to proiot

stress-strain relations, stress distributions, vibrations, wave propagation

Ph.nweDe and criteria of failure for such materials as are found in a bed of

dry sand or the pile of grains In the carbon microphone. The line of attack,

which has been the most fruitful1 begins with a coasiderstion of the local

forme. and deformations at the contact surfaces between adjacent grains

Becaus of the extraordinarily ocplex nature of the problem the grains have

Sbeen Idealized as like spheres in regular arrays. Even with this simplifica-

tion, at least until recently, only the ocmponent of force normal to each

contact surface has been taken into account [1,2,3,4]. The relations between

normal force3 N 9 contact radius , 0 &nd displacement, c4. are obtained from

the Hertz theory of contact of elastic bodies [5]:

0 - (1)

L8,

2 (2)

where R is the radius of the spheres, Vi is Poissonts ratio and/0. the shear

modulus of the material of the spheres. Of special interest is the normal

compliance
# do& iV

da (3)

S71* Lecture presented at the Second U.S. National Congress of Applied Mechanics$
Ann Arbor, Michigan, on June 16, 1954.
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The n"On-linearity of theme relations giv~s the first inkling of dyrAmical

difficulties in addition to the purely geometrioal ones. Tho behavior of a

granUr material may be expected to depend strongly on the initial tress

which, in turn, affects the role of the elastic constants of the individual

rains. The early forms of the theory predict wave velocities proportional

to the sixth root of an initial Isotropio pressure and the cube root (rather

than the uam- squmm root) of the shear modulus of the grain (23,4). These

relations have beon confirmed s"rimntallY 2,13] bat absolute velocities

are in poor aeement uben the theory does not include the effect of tanger-

tial oepocente of force stween gpains, It Is the ppose. of this lUoture

to discuss sow of the p oWmas end consequences of including consideration

of tangential forces Y.-4 the contact surface**

Corresponding to the Hertz theory, there is a solution of the equ•tions

of elasticity [6p7] wboih " s into accut a monotonically Increasing tangen-

tial force T ) subequent to the application of a normal force. It is found

that a tangential force, no mtter how sull, produces infinite tangential

traction (V) at the edge of the contact surface (see Fig. 1) if It I$ assumed

that there is no relative displacemint of opposing points on the contact sur-

face. Accordingly, it is assumed, in the theory, that such a relative dis-

placement does take place and, because of symmetry, it occurs on an annulus.

Further, the outor edge of the annulus is assumed to coincide with the edge of

the contact surface, because it is there that the infinite traction would

otherwise occur. The boundary conditions of the theory of elasticity require

that there be specified, on the annulus, the tangential traction or displace-

ment or a relation between the two. In this case it has been assumed that

the tangential ocuponent, I , of traction at each point of the annulus is

proportional to the normal component, 0 1 at that point. Physically, this

is to say that slip takas place on tha annulus in such a %y that CctLIccbt1
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law ot friction holds at each point, p e, if are is the Hertz

normal pressure and f is a constant coeffoiient or friction. The resulting

distribution of tangential traotion over the entire contest surfaoe Is illus-

trated in Fig. 1.

An the tangential force is itnreased, tb. theory predicts that the

inner radium (c ) of the anzulus of slip diaini-shes acoording to the law

At the sam time, tbe- relative tangential. isplaoment, I , of distant points

In the two sjphrOe depends on the tangential force according to

6r~~Ž (, - "" 5
IL -

This relation is shown in Fig, 2 along with experimental data, obtained by

Johnson (8) with steel spheres, which confirm it. The tangential complianoe,

to be ecapared with Equation (3), is

The next stopt in the study of local effects at the contact surfaces9

was to deter-mine the consequences of reversal of the sense of the tangential

force (9]. If the tangential force, after reaching a magnitude T-T* <4fN
is d1-1Wsahed, the force-displacement relation is

S•,,~ýa ZtfN - N -

This relation iS shown as ths curve PRS in Fig. 3. Here a new complication

is seen to enter namely, the inelastic (as distinguished from non-linear

,'elastic) chs•-ctar of the ta•ngtn .a load-displac•_et-nt ralation. In the case
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where the tangential force oncillatoa botween V T4 (where IT0 < f N )I

three important conclusions were reached: (1) slip is confined to an annulus

whose inner radius to given by Equation (4) %ith c and 1" replaced by c*

and TV, (2) the amplitude of the relative displacement of the spheres is

given by Equation (5) with T replaced by Tj (3) the force-displacement

curve is a loop (Fig. 3) enclosing an area which represents the energy dis-

sipeation per cyoles

F (fN-

S, T f N
I, af N TV

All of thes conclusions have been subjected to experimental test.

Tests by Mindlinp Pascl Osmer and Deresiewicz [10] were made with a

pile of three polished glass lenses, pressed together with a normal force

following which an oscillating transverse force was applied to the central

lens at 60 c.p.s. (Fig. 4). According to the theory, relative displacement

at the contact surface occurs only on an annulus, no that wear patterns should

be observed only there and with inner radius given by Equation (4). Such

patterns were observed (Fig. 5) and the comparison of their dimensions with

those predicted by the theory is shown in Fig. 6. Measurements were also

made of energy dissipation. At large amplitudes these conformed with Equation

(8) butq at small amplitudes, the enerpy dissipation varied as the square or

the tangential force rather than the cube as the theory requires. This wati

evidence that a velocity dependent factor might contribute to energy dissipa-

tion in addition to the static considerations on which Equation (8) is based.

An extensive series of both statio and dymamic tests by Johnson [8]

bear on vany aspects of the theory. Hils statlc experiments included lnc'u1ng,
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unlcading, oaerlcading and cyclic .loading: all confirming the behavior pro-

dioted by the theory. In his dynamic tests, conducted at 46.5 o.p.S. with

a variety of sphere diameters and normal Icads. Johnson obtained the rela-

tions between tangential force and displacement amplitudes shown in Fig. 7.

As may be eon, the teory is very good in this respect. The sae series of

tests yielded data on energy dissipation (Fig. 8) and in this case the theory

is not satisratory. As may be "eat in Fig. 8, the energy dissipation per

cycle at small amplitudes is sgin fomd to vary as the square of the oapli-

tudor indicating the presence of a velocity dependent mechanim %bich c-

pletel.y overshadows the static mechanism at very maln amplitudes. IN ald-

tion, there appears to be a geometrical faotor, aissing in the theory, shioh

is important at intermediate amplitudes, since* in that rogio,:Johnsonos

experiments reveal s dependence of energy dissipation on both sphere diameter

and normal le-dj vhich Is not accounted for in the theory. It is only-at

Urge amplitudes (near gross sliding) that the theory appears to give good

results for energy dissipation per cycle.

In addition to normal and tangential forces on the contact surfaces1

tvisting couples can also be present in a significant amount in certain types

of deformation of granular materials. Tba problems analogous to thoe described

above for tangential forces have also been solved for tvisting couples [7,1,12).

Before proceeding to assemblages of spheres it van necessary to carry

the theory of pairs of spheres one step farther. Thus far1 in both theory

and experiment, the normal force vas held constant during variation of the

tangential force. However, in an assemblage of spheres under varying external

load or internal vibration, the normal and tangential forces on a single con-

tact surface vary simultaneously. In this case the inelastic character of

the relation between tangential load and displacemsnt introduces a very great

ccmplication in that it causes tha lnstanntuanaotus t ential forco-diaplaciment
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relation to depend on the entire Past history of normal and tangential loading.

Different phencesna are involved and difforent remslts obtained depending upon

whether the normal or the tangential force is held oonstantl while the other

varies; whether they both very, and whether the sense of the variation is

such that one inreases while the other decrease*, both increase, or both do-

ore&a"; weotber their relative rate of cbange is greater or lee. than the

coefflolent of tritio.•; whether the imodiate past history of loading was

in the saee or opposite sense as the current loadnig. For example, suppose

that, after-applying a norsal. force.. bbth N amd T are increased at an

arbitrary relative rate. Then, in place of Equation (6), the- tangential.-ocmplL-

a *e is [9(9

Ff1:1 A + I r \I/3l

4rT f

whnre 0 Is the instantaneous radius of the contact surface. Compliances of

this type enter into the prediotion of failure loads of granular materials.

The implications of the form of Equation (9) are discussed below.

Another case, of interest in connection with vibrations of granular

uaterials, is that in which) after an initial normal force N. is applied,

the tangential force oscillates between *T* while the normal force varies

in such a way that dti/dT is constant. The tangential compliance during

the loading part of the oyole is

¶ ,.5 -=+ (,-e)F- (,+) L*+ (10)

where
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L - T/f No

9 f/•.

ror the unloading part of the cycle the signs or 9 and L are re. rsed in

Equation (10). The aaeoolated "static" energy disuipation per cycle is

F'9(2.')(IH.VI _,_(.L)/_ - ,L)/

1 -50 L 0(- L*) (1)

I6

Consider, now, a granular body composed of like gphargs. If the body

is fully oonsolidated the arrangement of the spheres is a face-centertd oubid

or hexagonal arrayg both of these being arrangements of densest packing. An

incompletely consolidated body contains clusters of tpheres having such pack-

ing. We begin by considering an element of a face-centered cubic array of

spheres in equilibrium under an arbitrary state of initial stress and ask

what deformation will result frcm an arbitrary additional increment of stress.

This question has been explored in detail recently I13].

The elemntary block of the face-centered cubic &rray is shown in

Fig. 9 and the componerts of incremontal forceI d R acting on it are

shown in Fig. 10. The incremental stress d 9 is defined as the ratio of

the incremental forme to the area of a face of the block, i.e., dri = dA ISROS
where ( is the radius of the spheres. The deformation of the block, resulting

from the application of d% I can be obtained if the increments of contact

force between spheres are known; for then the relative incremental dieplace-

ments of the spheres can be found by multiplying by the contact compliances*
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Each sphere in a face-centered cubic array is in contact with twelve

other sphares. Hence there are thirty-six components of contact force on

each sphere. However, since we consider, tempcrarilyp a homogeneous state

of incremental stress, eighteen of the €oaponaats of contact force are equal

in pairs, leaving only eighteen to be found, of which six are normal components

and twelve tangential. The latter are, in turn, related through three equa-

tions of moment equilibrium. The eighteen contact forces are related to the

stresses d(j throuh six independent equilibrim equations so that, in all,

there ame only nine equations of equilibrium from which to determine eighteen

contact foroes. that is# the proble is statically indeteriinate. It may be

solved either by introdueing equations of compatibility of relative displace-

sents of spberes (there are nine ouch equation*) or by starting with a set

of c•na:tible Incremental strains dEdj and calculating the corresponding

contect forces. The latter procedur* is simpler since it does Dot involve

the solution of eighteen simultaneous equations. In either case the inore-

mental stress-etrain relation is found in the form

ihere# for the most general state of 4--Atial stress, CSjjk is a non-sy7etric

tensor having thirty non-zero components when referred to the principal axes

of the cubic array. These component. are linear functions of the reciprocals

of the eighteen initial compliances associated vith the twelve contact sur-

faces. Each of the initial complianoes depends, in turn, on the history of

the initial stress according to relations such as Equations (9) in which N

and T are themselves functions of the stress. Thus the problem of solving

Equation (12) to obtain a finite stress-strain relation is a formidable one

involving, as it doess the solution of simnultaneoua, ncn-linear, integro-

dittrential equations. Howevere, in cortain special cases, which can tv
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reali;zd in the laboratory, the integration of the inoresmntf1 atress-strain

relation either can be accomplished or is not necessary.

An example of a test in %htch the inorerantal stress-strain relations

may be used without integration is that of smaln vibraticca In the presence

of high initial stress. In this case the change In stress during vibrotion

can be made so miall in ncmparison with the initial stress that the contact

coaplianoes remain essentially constant. Furtherore, if the initial stress

Is isotropio the inoremantal strese-strain relAtion reduce* to one of sixple

ouble am, try with only three ooeffitientes

dC4' 2 c,, d'. , 10,CI (dfll +4,:S)

d%* Z cod#,,, +.d,, )

d,,+,- - cl,d * c,

4~,: Z 4 + C161 1

wihere

in uhich G. is the initial isotropic stress. In the case of a high frequency

vibration? C,, I CL and c*.•. must also have imaginary Parts; but the theory

is not sufficiently developed to write them explicitly, although Johnson's

experiments give a good indication of what their for-i should be. At present,

the imaginary parts are ocitted. It is then a simple matter to calculate

wave velocities or frequencies of vibration of a bar. Such bars wers -construc--

tad in the follow~ng mu~nr [13]. A long rectang-alar box, linad with a loose
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rubber sheet, was carefully filled with 1/8" steel balls arranged in face-

centered cubic array. The -,!et was then folded over, sealed and evacuated.

The external pressure looked the balls in place so that the solid "granular

bare could be removed from-the box (nee Pig. 11). The balls were arranged,

in various bars, so that either the [1003 or the (1101 direction was xsrallel

to the length of the bar so as to oliminate coupling between longitudinal

and flexural modes.. Thus the bars could be excited in simple axial vibration

and their ntural frequ*naies measurod as a function of the extornal prMesure.

Results of mxh experiment, are shown in Fig. 12. Two sets of data am given:

owe with balls having a dimensiocal tolerance of ! 50 x 10-6 in. and the

other ! 10 x 10"6 in. As may be seen, the frequencies of the bar made with

the better balls are closer to the theoretical frequencies and the agreeent

improves in both cases with increasing pressure. The reason for this beomoes

apparent when the dimensional tolerances are compared with the relative

approach of the balls under the initial pressure. When 0'. = 2 psl,

S1.955 x 10- in. and when 0o' 14.7 psi, I4 d 7.39 x 10- in. Thus

many spheres may be expected to be under larger and smaller initial contact

forces than if all spheres were identical in size and, also, some spheres

may be loose. It may be shown that the presence of off-size or loose spheres

diminishes the stiffness (and hence the frequency of vibration) of the array

and the diminution becomes greater with increased spread of the dimensional

tolerance and reduction of pressuav. These effects are reflected in the data

shown in Fig. 12.

Measurements of logarithmic decrement of the vibrations were also madel

but they cannot be compared with the theory until the imaginary parts of the

compliances are introduced into Equations (14).



Pigarding integration of incremental atress-strain relations, there

is a case which can be bandled without difficulty. Tis is the-problem of

a simple cubic array of speor* under an initial isotropic stress9 subjected

su ibeoquently to hcsothatic loading. Th uimple cubic array is ftatiOallY

I determirte, ao that the contact forces can be calculated vithout referIOce

to the loading history. Fprtherpore dN/ST , in Zquation (9), is a constant

for bcootbetie loading, i.e. , if the additiofll stress quad•io is au saY

similar and similarly oriented with respect to its previous fore. Accord-

Inglyt the Sewr%2 systv of simltIUMOQ' intetr 'ffr quation&

reduces to a 9et of quadratures and thes, it turns Out, are o.preesinble In

closed form C14].

I
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